Google Scholar

We have 47 guests online
Ulti Clocks content


УДК 531.8+669.14


Алюшин Ю.А., д.т.н., проф.
Московский государственный горный университет, г. Москва, Россия


ОСЕСИММЕТРИЧНАЯ ДЕФОРМАЦИЯ В ПЕРЕМЕННЫХ ЛАГРАНЖА


Alyushin Y.
Moscow state mountain university, Moscow, Russia ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it .)


AXISYMMETRIC DEFORMATION IN LAGRANGIAN

 

Abstract. The equations of motion in the Lagrange form for the processes of precipitation, the sheardistribution, backward extrusion in axisymmetric strain, obtained by integrating the kinematically possible velocity fields in the form of Euler. The principle of superposition of motions you can use them to analyze more complex deformation processes. A visual comparison of observed and calculated trajectories of moving nodes of the grid allows for adjustments in solutions to improve the accuracy of energy-power parameters of the process, taking into account the local and mean integral characteristics of the strain state.
Keywords: The equations of motion in Lagrangian form, the superposition principle, invariants, power and force of deformation.

 

REFERENCES

1. Teorija kovki i shtampovki: Ucheb. Posobie. E.P. Unksov, U. Dzhonson, V.L. Kolmogorov i dr. Moscow: Mashinostroenie, 1992. 720 р., il.
2. Kolmogorov V.L. Mehanika obrabotki metallov davleniem. Moscow: Metallurgija, 1986, 688 р.
3. Aljushin Ju.A. Mehanika tverdogo tela v peremennyh Lagranzha. Moscow: Mashinostroenie, 2012. 192 р., il.
4. Aljushin Ju.A. Mehanika processov deformacii v prostranstve peremennyh Lagranzha: ucheb. posobie dlja vuzov. Aljushin Ju.A. Moscow: Mashinostroenie, 1997. 136 р.
5. Aljushin Ju.A. Princip superpozicii dvizhenij v prostranstve peremennyh Lagranzha. Problemy mashinostroenija i nadjozhnosti mashin. 2001. No 3. P. 13-19.
6. Aljushin Ju.A., Zhiguljov G.P., Shirokih A.M. Metody opredelenija traektorij chastic v processah deformacii. Obrabotka materialov davleniem. Kramatorsk. 2012. No 1 (26).p. 9-16
7. Aljushin Ju.A., Goncharuk A.V., Zhigulev G.P., Fartushnyj R.N. Kinematicheski vozmozhnye polja skorostej pri poperechno–vintovoj prokatke. Obrabotka materialov davleniem. 2008. No1 (18). Kramatorsk, p.4-10.
8. Jelsgolc L.Je. Differencial'nye uravnenija i variacionnoe ischislenie. Moscow: Nauka, 1969, 424p.

 

.pdf