We have 151 guests online
Ulti Clocks content

UDC: 616.718.49-089.007.84-036.838

Kryshchuk1 M., Buryanov2 А., Lykhodii2 V., Ieshchenko1 V.
1 - National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )

2 - Bogomolets National Medical University, department of traumatology and orthopedics, Kyiv, Ukraine


Крищук1 Н.Г., д.т.н., проф., Бурьянов2 А.А.,д.м.н., проф., Лиходей2 В.В., Ещенко1 В.А.

1-НТУУ «Киевский политехнический институт», г. Киев, Украина; 2-Национальный медицинский университет им.
О.О.Богомольца, кафедра травматологии и ортопедии, г. Киев, Украина



Abstract. Constructed a dynamic model of patelofemoral joint on human-based simulation computer model of a complex system of movement connected elastic and rigid bodies. Options patella biomechanical movement of bodies connected by joints defined by vector given angular velocity of rotation of the tibia. Patella speed depends on patellar spring-equivalents tension forces in connection, providing interaction force between the bodies of the simulation model. In this article, using of information technologies and application software a dynamic simulation model of patellofemoral joint is created. By calculation and theoretical determination of the angular, linear displacements of the patella, and the equivalent of von Mises stress in the patellar cartilage at knee flexion from 0° to 30° in normal and patellar instability, which is accompanied by trochlear dysplasia type A and B established that the concentrators at patellar instability are placed only on the lateral facet, regardless of the type of trochlear dysplasia. Type of dysplasia affects patellar displacement and distribution of von Mises equivalent stress in the patellar cartilage in normal and at instability. The adequacy of the results of the numerical experiment tested by convergence controlled parameters values of stresses in the zones of maximum gradient.
Keywords: computer simulation, finite element method, patellar instability, trochlear dysplasia.


1. Amis A.A. Current concepts on anatomy and biomechanics of patellar stability.Sports Med Arthrosc. 2007 Jun;15(2):48-56.
2. Jafaril A, Farahmand F, Meghdari A.: The effects of trochlear groove geometry on patellofemoral joint stability-a computer model study. Proc Inst Mech Eng H. 2008 Jan ; 222(1):75-88.
3. Jafari A, Farahmand F, Meghdari A. A rigid body spring model to investigate the lateral shift - restraining force behavior of the patella.Conf Proc IEEE Eng Med Biol Soc. 2007 ; 2007:4679-82.
4. Elias JJ, Cosgarea AJ. Sports Med Arthrosc. 2007 Jun; 15(2):89-94. Computational modeling: an alternative approach for  investigating patellofemoral mechanics.
5. Elias, J.J., Kilambi S. and Cosgarea A.J. 2010. Computational Assessment of the Influence of Vastus Medialis Obliquus Function on Patellofemoral Pressures: Model evaluation. Journal of Biomechanics. 43, pp.612-617.
6. Besier T.F, Gold G.E, Beaupré G.S, Delp S.L. A modeling framework to estimate patellofemoral joint cartilage stress in vivo.Med Sci Sports Exerc. 2005 Nov ; 37(11):1924-30.
7. Farrokhi S, Keyak J.H, Powers C.M. Individuals with patellofemoralpain exhibit greater patellofemoral joint stress: a finiteelement analysis study.Osteoarthritis Cartilage. 2011 Mar; 19(3):287-94. Epub 2010 Dec 21.
8. Fitzpatrick C.K, Baldwin M.A, Rullkoetter P.J. Computationally efficient finite element evaluation of natural patellofemoral mechanics. J Biomech Eng. 2010 Dec ; 132(12):121013.
9. Dejour D, Le Coultre B. Osteotomies in patellofemoral instabilities. Sports Med Arthrosc 2007; 15(1):39–46.
10. Dejour H, Walch G, Neyret Ph, Adeleine P. Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 1990;76:45-54.
11. http://www.materialise.kiev.ua
12. http://www.solidworks.com
13. ANSYS Workbench. User’s Guide. Release 12.1, 2009.-124p.