We have 109 guests online
Ulti Clocks content


УДК 621.924

Zaloga V., Nagornyj V.

«Sumy State University», Sumy, Ukraine



The subject of this study is the cutting tool.
The aim is to develop a method to determine the actual resistance of the tool.
The research results, are presented in this paper, were carried out computational-experimental method, and showed, that tool wear, leading to its failure, occurs over time in accordance with the well-known Lorenz curve. This curve has three characteristic regions, describing the burnishing tool, its normal operation and catastrophic deterioration or destruction.
As a result of this work, was obtained by an analytical dependence, graph which describes all three periods of operation of the instrument. The desired tool life is in this relationship as one of its parameters.
The proposed method for estimating the tool life can be used in lathes with numerical control.
Conclusion. An efficient method for estimating the tool life, allowing for indirect features - the level of sound, that is generated by the cutting process, to predict the time of replacement of the cutting tool.

Keywords: Resistance, tools, sound, wear, damage


1. Zaloga V.O., Ju.M. Vnukov Znoshuvannja і stіjkіst' rіzal'nih lezovih іnstrumentіv: navchal'nij posіbnik [Wear resistance and cutting blade tools] Sumi: Sums'kij derzhavnij unіversitet, 2010, 243 p.
2. Surkova A.I., Burtovoj V.M. Improving the efficiency of processing on CNC machines through the use of automated control systems. Progressivnye tehnologii v mashinostroenii: tematicheskij sbornik nauchnyh trudov, 2006. pp. 39 - 42.
3. Kozochkin M.P. Vibroakusticheskaja diagnostika tehnologicheskih processov [Vibroacoustic diagnostics of technological processes] Moscow: IKF «Katalog», 2005, 196 p.
4. Lorenc V. F. Iznos detalej sel'skohozjajstvennyh mashin [Wear of agricultural machines] Moscow: Mashgiz, 1948, 98 p.
5. Sundaram S., P. Senthilkumar P., A. Kumaravel A., Manoharan N. Study of flank wear in single point cutting tool using acoustic emission sensor techniques. ARPN Journal of Engineering and Applied Sciences Vol. 3, No. 4, August 2008, pp. 32- 36.
6. Zaloga V.A. Zinchenko R.N. Investigation of the possibility of applying the method for diagnosis of acoustic emission in finish turning of titanium alloy. Vesnik CumDU. Serija Tehnichni nauki, 2008, No. 4, pp. 118 - 125.
7. K.A. Djadjura, Nagornyj V.V. Predicting performance of cutting tools based on an assessment of the surface layerstress of the material. Mashinobuduvannja ta transport: zb. nauk. pr. - Sevastopol', No. 4, 2010, pp. 66 - 71.



УДК 621.791.754

Iljawenko D., Chinahov D.
Jurginskij tehnologicheskij institut (filial) Tomskogo politehnicheskogo universiteta g. Jurga, Rossija



Abstract. Purpose. To estimate possibility of use of teplovizionny equipment for quality standard of extent of temperature fields on a
surface of a welded product.
Research. For registration of temperature fields in products when welding by melting researches on a known technique were carried out. Carried out a naplavka of the roller manual arc welding (RDS) by the covered electrodes of the LB 52U brand on a plate of 100х150 mm in thickness of 6 mm from steel 09Г2С. Used the most applied VD-306 power supply and the invertorny power supply of new generation of Nebula-315. Registration of temperature fields was carried out by means of a teplovizor of ThermaCAM P65HS by FLIR firms (USA). Shooting carried out throughout time of welding of one pass with frequency of change of the thermoimage of 5 Hz. Adequacy of the received temperature fields supervised by means of infra-red pyrometer S-500. After
processing initial термограмм in the ThermaCAM Researcher appendices and a mathematical MATLAB package in the form of a set of m-files received images of isotherms on a plate surface.
Conclusion. Teplovizionnoye research of thermal fields allows to estimate a zone of thermal influence in real time and to predict prochnostny properties, a chemical composition and mechanical properties of welded connections.

Keywords: temperature, hand-operated arc welding, thermo vision camera, zone of heating, power supply.



1. Фролов В.В. Теория сварочных процессов [Текст]/В.В. Фролов// М.:Высш. шк. 1988. – 559 с.
2. Рыкалин Н.Н. Расчеты тепловых процессов при сварке [Текст]/Н.Н. Рыкалин// Москва 1951. – 291 с.
3. Березовский Б.М. Математические модели дуговой сварки: в 7 т. Том. Основы тепловых процессов в свариваемых изделиях [Текст]/ Б.М. Березовский// Челябинск: Изд-во ЮУрГУ, 2006. – 547 с.
4. Теория сварочных процессов: Учебник для вузов / под ред. В.М. Неровного. – М.: Изд-во МГТУ им. Н.Э. Баумана. 2007. – 752 с.: ил.
5. Чинахов Д.А., Давыдов А.А., Нестерук Д.А. «Методика обработки температурных полей при сварке плавлением» сборник трудов Международной научной конференции, посвященной 100-летию со дня рождения профессора А.А. Воробьева «Становление и развитие научных исследований в высшей школе»: – Том 2/ Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2009. – 462 с.
6. Брунов О.Г. Механизированная сварка в среде активных газов с импульсной подачей сварочной проволоки: научное издание – Томск: Изд-во Томского политехнического университета, 2007. – 137 с.
7. ГОСТ 22536. 1……ГОСТ 22536.9 Сталь углеродистая и чугун нелегированный. Методы определения: углерода (1); серы (2); фосфора(3); кремния(4); марганца (5); хрома (7); меди (8); никеля (9).
8. Лившиц Л. С. Металловедение сварки и термическая обработка сварных соединений. - 2-е изд., перераб. и доп. — М.: Машиностроение, 1989. – 336 с.: ил.
9. ГОСТ 5264-80. Ручная дуговая сварка. Соединения сварные основные типы, конструктивные элементы и размеры.



УДК 681.523.4

Nikolenko1 I., Ryzhakov1 A., Olejnichenko2 A.

1 - The National Academy of Environmental Protection and Resort Construction, Simferopol, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it );
2 - JSC «Stroygidravlika», Odessa, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )



Abstract. Purpose. Obtaining experimental data on the nature of the percolation transition processes in hydraulic drive on the basis of discrete-regulated axial-piston hydraulic machines; the comparison of experimental data with the results of numerical calculation.
Methodology. The study of transient processes was carried out by means of a using a hydraulic drive on the basis of axial piston hydromachines of 403 series, with volume of 112 cubic centimetres on an experimental stand with a capacity recuperation. Pressure in pressure line and hydraulic motor control line, speed of pump rotation and flow rate through overload relief valve continuously registered. The experimental data were compared with results of numerical calculation.
Scope of the results. The obtained results can be used when designing more efficient and reliable hydraulic drives of road-building machines.

Conclusions. Comparison of experimental data and results of numerical calculation shows that the proposed by authors a mathematical model of hydraulic drive on the base of discrete-controlled axial piston hydromachines with cylinder’s tilting block, adequately reflects basic physical processes that determine the operation of hydraulic drive. For further improvement of the model it’s necessary to specify the model of hydraulic machine’s control block and consider wave effects in the pipelines of pressure line and hydraulic cylinders of pumping unit.

Keywords: hydraulic drive, axial piston hydraulic, pressure pulsations, transient, discrete control.

1. Fedorec V. A., Pedchenko M. N., Pichko A. F., Peresad'ko Ju. v., Lysenko V. S. Gidroprivody i gidropnevmoavtomatika stankov [Hydraulic drives and gidropnevmoavtomatika machines]. Kyiv, 1987, 375 p.
2. Strutinskij V. B. Matematicheskoe modelirovanie processov i sistem mehaniki [Mathematical modeling of processes and systems in mechanics]. Zhitomir, 2001, 612 p.
3. Ryzhakov A. The selection of parameters discretely adjustable pumps for hydraulic drives of mobile technics. Ryzhakov A., Nikolenko I., Dreszer K. TEKA Kom. Mot. Energ. Roln. OL PAN. 2009. vol. IX. p. 267 -276.
4. Ryzhakov A. N., Nikolenko I. V., MOTROL. 2010. 11B. pp. 52 – 65.
5. Ryzhakov A. N., Nikolenko I. V., MOTROL. 2010. 12D. pp. 110 – 116.
6. Ryzhakov A. N., Nikolenko I. V., Industrial hydraulics and pneumatics, 2010, No. 4 (30), pp. 63 – 75.
7. Ryzhakov A. N., Nikolenko I. V., Lihachev A. V., Construction and technogenic safety, 2010, v. 33 – 34, pp. 349 - 360.
8. Nikolenko I. V., Ryzhakov A. N. Gornye, stroitel'nye, dorozhnye i meliorativnye mashiny [Mining, construction, road and drainage machines]: Zb. nauk. pr., 2010, 76, pp. 21 – 26.
9. Nikolenko I. V., Ryzhakov A. N. Nauk. pr. Donec'kogo nac.-tech. Unіver.: Seryja gyrnichno-elektromehanychna [Scientific papers of Donetsk National Technical University of Mining and electromechanical Series]: 2012, v. 23 (196), pp. 191 – 202.


<< Start < Prev 11 12 13 14 15 16 17 18 Next > End >>

Page 16 of 18