We have 110 guests online
Ulti Clocks content


UDK 621.924.093.048

 Moisejenko M.S.1, Salenko O.F.1,  Kumurgy O.U.2, Ljashenko B.A.2 , Rutkovsky A.V.2

1 – Kremenchug Mikhailo Ostrohradskyi National University, Kremenchug, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )

2 – G.S. Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine, Kyiv, Ukraine


  Моісеєнко М. С.1, Саленко О. Ф. 1  д.т.н., проф.

Кумуржи О. Ю. 2, Ляшенко Б. А. 2 д.т.н., проф., Рутковський А. В. 2 к.т.н., ст.н.с.

1 – Кременчуцький національний університет імені Михайла Остроградського, м. Кременчук, Україна ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it ); 2 – Інститут проблем міцності ім. Г. С. Писаренка НАН України, м. Київ, Україна ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )



Purpose. Among the trends of hydroabrasive treatment the improving of the accuracy and efficiency of processing equipment is allocated. Effectiveness can be enhanced by increasing fluid pressure and the number of concurrent working heads. However, increasing of working pressure leads to intensification of systems of wear of hydrocutting equipment, including calibration tubes, which in turn reflected in the cost of processing. In this regard, an urgent task is improving the stability of calibration tube using the
functional-oriented approach.
Design/methodology/approach. To analyze the phenomena that occur in calibration tube during the formation of liquid abrasive flow the software package Flow Vision was used. When modeling the problem of detection of conditionality of diagrams load on the cross-section of calibration tube with microhermetic parameters of jet erosion was treated, establish the role and activity of wave processes occurring in streams and exert force on the inner diameter of the calibration tube. To address the question of whether the
use of certain surface coatings on hydroabrasive resistance the samples with size 40x10x5 mm from titanium alloy VK8 were tested, which is instrumental material of elements of hydroabrasive processing, as no cover, so with a vacuum-plasma coating TiN, with the nitrided layer and the combined coverage of the nitrided layer and TiN.
Findings. сomparative experimental tests have shown that depending on the modes of technological processing, samples with a combined surface of the nitrided layer and TiN wearless intense than the samples without coating when exposed hydroabrasive stream.
Originality/value. The functional dependence of wear of calibration tubes with coating for criteria of hydroabrasive stability complete the overall methodological information base and certainly contribute to the development of the principle properties of the surface layer.

Keywords: coatings, hydrocutting devices, hydro-cavitation wear.


  1.  Prospects of development of waterjet and water abrasive processing. Looking downstream. Amer. Mach. 2001. 145, № 3, pp. 80-82, 84, 86, 88, 90.
  2.  Salenko O.F., Fomovska O.V. (2008) ”Prospects for market equipment for sheet handling”, Visnyk KDPU, no. 6 (48), pp. 45-50.
  3. Stepanov V.S., Barsukov G.V. (2004), “Modern technological processes of mechanical and technical hydrojet of technical fabrics. Library of technologist”, Mashynostroenie, Moscow, Russia.
  4. Tsygankovskij A.B. (2009) “Determining of the degree of influence of the angle of attack jet on productivity and quality of waterjet processing submerged jets”, Visnyk SNU named by V. Dal, no. 6, pp. 220-228.
  5. Provolotskij A.E. (1989) “Jet-abrasive treatment of details”, Tehnica, Kyiv, Ukraine
  6. Nepomjashij E.F. (1971)“Friction and wear under the influence of the jet particles”, Nauka, Moscow, Russia.
  7.  Kleis I.R. (1980) “Fundamentals of the choice of materials for operation in the gas abrasion wear. Friction and wear”, no. 2, pp. 263 – 271.
  8. Bylyk Sh. M. (1960) “Abrasive liquid metal processing”, Mashynostroenie, Moscow, Russia
  9. Poduraev V.N., Kamalov V.S. (1973) “Physical-chemical treatment methods”, Mashynostroenie, Moscow, Russia.
  10. Vynogradov V.N., Sorokyn G.M., Kolokolnykov M.G. (1990) “Abrasive wear”, Mashynostroenie, Moscow, Russia.
  11.  Dudyuk V.O. (2010) “Analysis of dynamic loading of items of zone of hydrocutting using application package Flow Vision”, Visnyk KrNU, no. 6 (65), pp. 59-62.



УДК 539.3

Rudakov K., Jakovlev A.
The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )



Abstract. In the notice 1 it has been considered, whether how the idea of Lee`s multiplicative breaking-up of a gradient of elastic and plastic strains of Cauchy-Green can be used in the generalized breaking-up in case of simultaneous presence of four types of strains: temperature, elastic, plastic and creeping.
In the given notice there have been shown the solutions of a problem of extract of temperature strains from the others, for the first time solved in R. Stojanović`s papers with co-authors for a thermo elasticity case. On a numerical example the convergence of such separation to a case of infinitesimal strains is displayed.
For the purpose of creation of the physical equations of a condition the second law of thermodynamics is used. Parametres of a functional which describes specific free energy of deformable system are defined.
Also the circuit of the account of temperature dependence of the factor of the temperature elongation, created on the basis of geometrical interpretation of this dependence is described.
Actually in one place all data on definition of temperature deformations are collected at modelling of the large deformations and at simultaneous presence of four types of deformations: thermal, elastic, plasticity and creep.

Keywords: large strains, multiplicate decomposition, temperature strains, factor of the temperature elongation.

1. Rudakov K.M., Dobronravov O.A. Modeljuvannja velykyh deformacij. Povidomlennja 1. Multyplikatyvnyj rozklad pry najavnosti chotyr'oh typiv deformacij [Modelling of the large strains. The message 1. Multiplicate decomposition in the presence of four types of strains] Journal of Mechanical Engineering of NTUU «KPI», 2012. no 64. pp. 7-12.
2. Lee E.H. Elastic–plastic deformations at finite strains. J. Appl. Mech. (ASME), 1969. 36. pp. 1–6.
3. Stojanović R., Djurić S., Vujošević L. On finite thermal Deformations. Arch. Mech. Stosow, 1964. 16. pp. 103-108.
4. Vujošević L., Lubarda V.A. Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient. Theor. Appl. Mech. Enging, 2002. 28-29. pp. 379-399.
5. Lubarda V.A. Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev., 2004. 57. no 2. pp. 95-108.
6. Germain P. Kurs mehaniki sploshnyh sred. Obwaja teorija [Course of mechanics of continuous environments. General theory] Moskow: Vyssh. shk., 1983. 399 p.
7. Montáns F.J., Bathe K-J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. Int. J. Num. Meth. Enging, 2005. 63. pp. 159-196.
8. NX Nastran 7.1. Advanced Nonlinear Theory and Modeling Guide. 2010 Siemens Product Lifecycle Management Software Inc. (elektronna versija).


There are no translations available.

УДК 621

Заховайко1 О.П. к.т.н., доц., Костюченко2 В.В., Манзик1 Н.В.
1 – НТУУ «Київський політехнічний інститут», м. Київ, Україна; 2 – ТОВ «Вікторія», м. Київ ,Україна


Zakhovaiko1 O., Kostyuchenko2 V., Manzyk1 N.
1-The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it ), 2-LTD “Victoriya”


Представлені результати експериментальних досліджень конструкційної міцності та роботоспроможності опор кулькових вільного переміщення виробництва ТОВ "Вікторія" (Україна) в залежності від твердості матеріалу корпуса та кількості кульок у ложі опори. Описані методика експериментів та спеціальне обладнання, спроектоване та виготовлене для їх проведення. Встановлені оптимальні режими термічної обробки корпусу опори та її реальні запаси міцності при нормативних рівнях статичних і динамічних навантажень. Проведена також оцінка роботоспроможності опори, яка визначалась, виходячи з можливості повного провертання центральної кулі в ложі з менших кульок при різних рівнях
Ключові слова: опора кулькова вільного переміщення, міцність, роботоспроможність, деформація, руйнування, статичне та динамічне навантаження.

1. Пат. 61002 Україна, Кульова опора [Текст] / Костюченко В.В., Резе В.Ф.; заявник і патентовласник Костюченко В.В. – № 2005 07482 ; заявл. 28.07.05 ; опубл. 15.12.05, Бюл. № 12. – 3 с. : ил.
2. ТУ 3 України 5786106.027-94. Палець кульовий передньої підвіски верхній з захисним чохлом. Технічні умови. – Введ. 04.04.1994. – К.: 1994 – 24 с. зареєстровано в Українському республіканському управлінні Держстандарту 04.04.1994 в книзі обліку за №091/00074.
3. ТУ У 34.3-01527695-026:2010. Складові частини підвіски та рульового приводу автомобілів. Технічні умови. – Введ. 30.07.2010. – К.: 2010 – 35 с.; зареєстровано в Укрметртестстандарті 30.07.2010 в книзі обл. за №02568182⁄035867. 
4. Справочник металлиста: Справочник. В 5-ти т. Т.2. / Под ред. А.Г. Рахштадта, В.А. Брострема. – М.: Машиностроение, 1976. – 720 с.


<< Start < Prev 11 12 13 14 15 16 17 18 Next > End >>

Page 13 of 18