We have 8 guests online
Ulti Clocks content


2012

УДК 621.941.25

 

Djadjura K. , Yunak A.
Sumy State University, Sumy, Ukraine


EQUIPMENT BASED ON SELF-ORGANISATION PROCESSES OF DIRECTED FORMATION OF DETAIL SURFACE

Abstract. Design methodology for modeling processes directed formation of a technical condition of power equipment in their selforganization.

Methodology. Applies synergic approach to determine the parameters of reliability of power equipment. This approach is scientific and reasonable selection of the main weighty settings directional properties of the formation of details of power equipment and arguments disregard an infinite set of other parameters. Self-organization processes directed formation of physical and mechanical properties of the surface layer of details is considered on the basis of systematic analysis of the evolution and degradation of the
technical state. The main elements of the system are: subsystem forming properties of the workpiece, the subsystem manufacturing (machining) and subsystem operation. Presented system is open. To be effected the influence of the environment, energy, matter and information, resulting in the transformation properties is realized piece in performance parts. Manages all these processes nonlinearity.
Feedback allows calculating metrics quantity and quality parameters of the process of technological transformation, as is the use of information technology impact, organize threading and permanence.
Findings. Is developed structural model directional parameters forming component subsystems of quality products for the directed formation properties of the surface layer of components that allow obtaining the necessary links between the parameters of the surface layer and the input and output parameters of the process operation that provide best performance or minimal cost.


Keywords: reliability, technological heredity, self-organisation, mechanical handling, surface layer.


REFERENCES

  1. Pronikov A.S. Parametricheskaja nadezhnost' mashin [Parametric reliability of machines] Moscow: MGTU im. Baumana, 2002, 560 p.
  2. Suslov A.G., Fedorov V.P., Gorlenko O.A. Tehnologicheskoe obespechenie i povyshenie jekspluatacionnyh svojstv detalej mashin i ih soedinenij [Technological support and improve operational properties of machine elements and their compounds] Moscow: Mashinostroenie, 2006, 448 p.
  3. Vasil'ev A.S. Napravlennoe formirovanie svojstv izdelij mashinostroenija [The directional properties of the formation of products of mechanical engineering] Pod red. A.I. Kondakova, Moscow: Mashinostroenie, 2005, 352 p.
  4.  Olemskoj A.I, Shuda I.A. Statisticheskaja teorija samoorganizovannyh slozhnyh sistem [Statistical theory of self-organized complex systems]: monografija, Sumy: SumGU, 2010, pp 68-69.
  5. Grigor'eva N.S., Bozhidarnik V.V., Shabajkovich V.A. Increase of Quality Products at Technological Heredity and Selforganization. 2007, Vol. 1, No. 20, available at: www.nbuv.gov.ua/portal/natural/Nn/2002_2009/statti/vup20/20–1/23.pdf.
  6. Pavlov V.V., Chepіzhenko V.І. The concept of modeling and analysis of the evolution of the technical state of complex technical systems in the greatest possible range of their life cycle. Kibernetika i vychislitel'naja tehnika, 2009, № 157, pp. 3 – 16.
  7.  Luckij S.V. Computer-integrated manufacturing engineering with elements of self-organization. Visokі tehnologії v mashinobuduvannі. Zbіrnik naukovih prac' NTU «HPІ». Har'kov, 2011, Vip.42, pp.156-162.
  8. Zaloga V.O., Djadjura K.O., Juwenko O.V. Modeljuvannja sinergetichnoї іntegracії procesіv proektuvannja, vigotovlennja і ekspluatacії mashinobudіvnoї produkcії virobnicho–tehnіchnogo priznachennja [Modeling synergetic integration of the design, manufacture and operation of engineering products industrial supplies]: monografіja, Sumi: Vid–vo SumDU, 2010, 278 p.
  9.  Haken G. Information and Self-Organization: a macroscopic approach to complex systems, Springer, 3. Auflage 2006
  10. Bolotin V.V. Prognozirovanie resursa mashin i konstrukcіj [Predicting life of machines and structures]. Moscow: Mashinostroenie, 1984, 312 p.
  11. Derij V.P. Some results of the forecasting service life and reliability of heat exchangers CHP]. Vestn. IGJeU, 2007, № 4, pp. 6 – 8.
  12.  Kragel'skij I.V. Trenie i iznos [In Friction and Wear].Moscow: Mashinostroenie, 1968, 480p.
  13. Kragel'skij I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [Basis of calculations on the Friction and Wear]. Moscow: Mashinostroenie, 1977, 256p.
  14.  Starkov V.K. Fizika i optimizacija rezanija materialov [Physics and Optimization of Cutting materials] Moscow: Mashinostroenie, 2009, 640 p.
  15. Mazur M.P., Vnukov Ju.M., Dobroskok V.L., Jakubov F.Ja. Osnovi teorії rіzannja materіalіv, [Basic Metal Cutting Theory] pіdruchnik, [dlja viwih navchal'nih zakladіv]; za zag. red. M.P. Mazur, L'vіv: Novij svіt, 2000, 2010, 422 p.
  16. Reshetov D.N., Ivanov A.C., Fadeev V.Z. Nadjozhnost' mashin [Reliability of Machines]. Moscow: Vysshaja shkola, 1988, 238 p.
  17.  Matalin A. A. Kachestvo poverhnosti i jekspluatacionnye svojstva detalej mashin [Surface quality and performance of the machine parts]. Moscow: Mashgiz, 1956, 239p.
  18. Kolesnikov K.S., Balandin G.F., Dal'skij A.M. Tehnologicheskie osnovy obespechenija kachestva mashin [The technological basis for ensuring the quality of machines]. Moscow: Mashinostroenie, 1990, 256 p.
  19. Bershadskij L.I. Fizicheskaja nadezhnost' mehanicheskih obektov [Physical Reliability of Mechanical Objects]. Kyiv: O–vo «Znanie» USSR, 1987, pp. 42.
  20.  Sedjakin N.M. On one physical principle in reliability theory. Izv. AN SSSR. Tehn. kibernetika. 1966, no.3, pp. 80 – 87/
  21.  Vol'kenshtejn M.V. Jentropija i informacija. [Entropy and Information]. Moscow: Nauka, 1986, 192 p.
  22. Ajlamazjan A.K., Stas' E.V. Informatika i teorija razvitija. [Informatics and development ofthe theory]. Moscow: Nauka, 1989, 174 p.
  23. Jetkins P. Porjadok i besporjadok v prirode.[Order and Disorder in Nature]. Moscow: Mir, 1987, 224 p.
  24.  Veksler Je.M., Martynov G.K. Povyshenie kachestva i nadezhnosti bytovoj apparatury magnitnoj zapisi. [Increase Quality and Reliability consumer applications Magnetic Recording]. Kyiv: Tehnika, 1988, 119 p.
  25.  Bazarov I.P. Termodinamika. [Thermodynamics]. Moscow: Vysshaja shkola, 1991, 376 p.
  26. Makarov P.V. The approach to modeling the Physical Mesomechanics processes of deformation and fracture. Fizicheskaja mezomehanika. 1998. T. 1, no. 1. pp. 61 – 81.
  27. Makarov P.V. Evolutionary nature of destruction of solids and media. Fiz. mezomeh. 2007, T. 10, no. 3, pp. 23 – 38.
  28. Makarov P.V. Loadable material as a nonlinear dynamical system. Fiz. mezomeh. 2005, T. 8, no. 6, pp. 39 – 56.
  29. Ivanov G.P., Hudoshinv, Kadushkin Ju.V. Nadezhnost' materiala v prochnostnyh raschetah. [Reliability of the strength of the material in the calculations] Tehkranjenergo, 2002, 87 p.
  30. Manuev M.S., Kul'bovskij I.K. Soldatov V.G. Increase of Toughness 20GL steel for Casting details of railway transport. Zagotovitel'nye proizvodstva v mashinostroenii №6, Moscow: Mashinostroenie, 2006 , pp. 6–9.


.pdf

 

УДК 532.53 : 629.784

 

Kovalev V.
National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine

DYNAMIC AFFECTS OF INNER STABILIZING DEVICES ON INERTIAL FLOWS OF VISCOUS INCOMPRESSIBLE FLUID IN LIMITED VESSELS

 

Abstract. The viscous incompressible flows of liquid fuel reservoirs in space vehicles tanks are investigated. The results of experimental researches of internal flows influence on rigid tank walls are presented. The analysis of graphic dependences of forces of liquid viscid friction and flows dynamic influence circular moments are conducted on flows. The experimental results for velocity profiles helps to design the rational baffles structures and forms the velocity fields which are the basis for inertial torque formulation and helps to calculate the dynamic affects of inertial flows. The practical recommendations of the rational use of internal devices from point of sizes, mass and affecting efficiency liquid are made.


Keywords: fluid inertial flows, flat baffles, Reynolds and Rossbi numbers, viscous torques of fluid flows on rigid tank walls.


REFERENCES
1. Kolesnikov К.S. Dynamika raket. Мoscow: Мashinostroyenie, 1980, 316 p.
2. Мikishev G.N. Experimentalniye metodi v dimamike kosmicheskogo apparata. Мoscow: Мashinostroyenie, 1978. 247 p.
3. V.А.Коvalev, А.N.Коvalchuk etc.А.S. 1531001 SSSR, МКI G 01 Р 215/02. Sposob graduirovki datchikov skorosti potoka zhidkosti I ustroystvo dlya yego osushestvlenya / (SSSR).- No 4287740/24; 21.07.87; Publ. 23.12.89, Bul. No 47.
4. Коvalev V.А. Journal of Mechanical Engineering of NTUU «KPI», 2006, No. 48, PP.73-79.
5. Коvalev V.А. Journal of Mechanical Engineering of NTUU «KPI», 2002, No 42, v.1, PP.107-111.
6. Brovchenko I.А., N.S.Gorodetskaya, V.S.Маderich [etc]Vzaimodeystvie vnutrennikh uyedinennskh voln bolshoy amplitude s prepyatstviyam, Prikladna gidromechanika, 2007. v.9, No. 1. pp.3-7.

.pdf


 

УДК 616.71-001.5-089.84.:669.295



Laksha A.
Ukrainian Military Medical Academy, Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


THE METHOD OF CREATING REALISTIC FINITE-ELEMENT MODELS OF LONG BONES

Abstract. The article describes in detail a method of finite elementary models of human long bones using a software package Mimics.
Algorithm for creating realistic models of elementary-course of long bones examined by the example of constructing a model of the tibia. A computer model was created based on the homographic study nine legs in 8 male patients aged 23 to 54 years with no signs of bone pathologic. Creating realistic models was to use computer tomography of limb segments and, based on the numbers of Hounsfield, a partition on the types of bone: compact , and the spongy medullar canal. The models assigned anisotropic properties. In the software environment of ANSYS models showed excellent performance. With the help of realistic finite-elementary models of human long bones can be carried out computer simulations to calculate the optimal system of fixation of bone fragments in fractures of bones based on the definition of critical displacements and strains in bone tissue, and in the metal structures of fixation devices.


Keywords: long bones, computers design.


1. Cornelissen P., Cornelissen M., Van der Perre G., Christensen A.B., Ammitzboll F., Dyrbye C. Assessment of tibial stiffness by vibration testing in situ - II. Influence of soft tissues, joints and fibula. J. Biomech. 1986;19(7):551-561.
2. Al-Sukhun J.; Lindqvist C.; Helendius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. II. Variables affecting the predictive behavior of a finite element model of a human mandible. 2007;80 (1):247-256.
3. Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Craniomaxillofac Surg. 2000;28(2):91-96.
4. Shahar R, Zaslansky P, Barak M, Friesem AA, Currey JD, Weiner S. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech. 2007;40(2):252-64.
5. Odgaard A, Linde F. The underestimation of Young's modulus in compressive testing of cancellous bone specimens. J Biomech. 1991;24(8):691-8.
6. P´erez M. A., Fornells P., Garc´ıa-Aznar J. M., Doblar´e M Validation of bone remodelling models applied to different bone types using mimics Available at:www.materialise.com/materialise/download/en/2610565/file
7. Крищук М.Г., Лакша А.М., Єщенко В.О. Оцінка адекватності імітаційної моделі напружено-деформованого стану сегмента кінцівки з фіксацією перелому стержневим апаратом зовнішньої фіксації / М.Г. Крищук, А.М.Лакша, В.О.
Єщенко // Вісник Національного технічного університету України «Київський політехнічний інститут», Серія Машинобудування, – К: 2011, – № 61, том 1. – С. 76.


.pdf


 
<< Start < Prev 11 12 13 14 15 16 17 18 Next > End >>

Page 12 of 18