Google Scholar

We have 72 guests online
Ulti Clocks content


УДК 004.942:62-756.62:621.869.888.8

Sydorenko Yu., Marynenko Ya.
The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. In accordance with regulations of International civil aviation organization, all aircrafts witch transport 30 and more passengers must have special device to defuse home-made explosive bombs. Numerical methods of computer modeling are used for construct that devises more and more. Quantity of these methods depends on adequacy level of created mathematical model to real physical process. In this article questions of design adequacy mathematical model of deforming process of special device body under
inner pressure of home-made bomb explosion are discussed. Mathematical model adequacy is controlled by comparison modeling and experimental results. Computer program "ANSYS/LS-DYNA" was used for mathematical researching. Because of mathematical model have to consist as gas part (detonation product, air) as metal part (defuse home-made explosive bombs devise body) it was based on Lagrange-Euler method of describing behavior of different materials under shock. Expansion of detonation products was
described by JWL equation of state. States of metal defuse home-made explosive bombs devise body and paper bomb body were described by elastic-plastic material model with kinematic hardening plasticity "PLASTIC-KINEMATIC". In order to find values of that model parameters for the paper bomb body spatial experiments were carried out.
Conclusions: Mode of deformation definition method of defuse home-made explosive bombs devise was created. That method bases on adequacy mathematical model which describes home-made bomb explosion process which places inside of devise align.
Increasing of paper bomb body thickness to 16 mm leads to decreasing plastic deformation of outer surface of defuse home-made explosive bombs devise body by straight line low with a coefficient 0,002 1/mm and decreasing level expansion that surface up to 1mm. This decreasing is equal to 20% of maximum level expansion special device body when was exploded inside of than high explosive without paper body.

Keywords: explosion, explosive-technical expertise, mathematic modeling explosive process, detonation, TNT, LS-DYNA, homemade
explosive device, explosive deformation, explosive crashing, JWL, PLASTIC-KINEMATIC.

1. ICAO Annex 6. Part 1. Amendment.
2. Kolpakov V.I., Babkin А.V., Ladov S.V., Mikhaylin А.I., Оrlov А.V., Sil`nikov М.V. Chislennaya otsenka effektivnosti deystviya jidkostnyh lokalizatorov vzryva v dvuhmernoy postanovke, Dvoynye tehnologii, 2000, no 2, pp. 5-10.
3. Sil`nikov М.V., Mikhaylyn А.I., Orlov А.V., Sadyrin А.I. Modelirovanie deformatsii jidko-emkostnogo elastichnogo konteynera pri vzryve zaryada VV: Trudy Vtoroy vserossiyskoy nauchno-prakticheskoy konferentsii (Aktualnye problemy zatschity i bezopasnosti). St-Petersburg: NPO SМ, 1999, Vol. II, pp.190–198.
4. Voytenko S.D., Vinglovs`kiy А.О., Sydorenko Yu.М. Eksperymentalni doslidgennya protsessu deformuvannya korpusiv konteyneriv dlya zneshkodgennya samorobnyh vybukhovyh prystroiv, Journal of Mechanical Engineering of NTUU «KPI», 2010, no 58, pp. 147-154.
8. LS-DYNA 971. Keyword user's manual. Livermore software technology corporation (LSTC), 2007, Vol. 1, 2206 p.
9. John O. Hallquist. LS-DYNA. Theory manual. Livermore Software Technology Corporation, 2006, March, 680 p.
10. Muyzemnek А.Yu., Bogach А.А. Matematicheskoe modelirovanie protsessov udara i vzryva v programme LS-DYNA (Uchebnoe posobie). Penza: Informatsionno-izdatel`skiy tsenter PGU, 2005, 106 p.
11. Rudakov К.М. Chiselni metody analizu v dynamitsi ta mitsnosti konstruktsiy (Navch. posibnyk). Кyiv: NTUU "КPІ", 2007. 379 p.
12. Аndreev S.G., Babkin Yu.А., Baum F.А. i dr. Fizika vzryva: Pod red. Оrlenko L.P. Мoscow: FIZMATLIT, 2002, Vol.1, 832p.
13. Dobratz B.M., Crawford P.C. LLNL Explosive Handbook [Properties of Chemical Explosives and Explosive Simulants]. Livermore: California, 1985, 541 p.
14. Kolpakov V.I., Ladov S.V., Rubtsov А.А. Matematicheskoe modelirovanie funktsionirovaniya kumulyativnyh zaryadov [Метоd. ukazaniya]. Мoscow: Izd-vо МGТU iм. N.E.Baumana, 1998, 38 p.
15. Dremin А.N., Savrov S.V., Тrofimov V.S., Shvetsov К.К. Detonatsionnye volny v kondensirovanyh sredah. Мoscow: Nauka, 1970, 172 p.
16. Маrochnik staley i splavov:
17. Official site ТОV "SPETSMETALLSERVIS":
18. Spravochnik mettalista:
19. Метаllurgicheskiy portal:
20. Selivanov V.V., Solov`ev V.S., Sysoev N.N. Udarnye i detonatsionnye volny. [Метоdy issledovaniya]. Мoscow: Izd-vo МGU, 1990, 264 p.
21. Orlov B.V., Larman E.K., Malikov V.G. Ustroystvo i proektirovanie stvolov artilleriyskih orudiy. Мoscow: Маshinostroenie, 1976, 432 p.
22. Larman E.К. Кurs аrtillerii. [Osnovaniya ustroystva artilleriyskih orudiy]. Мoscow: VAIA iм. Dzerginskogo, 1956. Vol. 1, 540 p.




УДК 62-525

Levchenko O.

The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. Improving the efficiency of hydraulic drives in cyclic systems.
Purpose. To determine the advantages and disadvantages of the main methods to control hydraulic systems and the possibility of combining them.
Design/methodology/approach. It was considered the basic methods of productivity regulation of cycle action hydraulic devices and determined their advantages and disadvantages. It was detected the dependence of hydraulic system efficiency from the control methods of pumping units and their connection to the technological process of the system.
Findings. As a result it is proposed methodology for the analysis of the system in order to determine an effective method for regulating the pump unit, depending on the particular system.

Originality/value. It is found the structural division of hydraulic system units with taking into account the work modes of devices that are included in its composition.

Keywords: the regulation, the hydraulic system of cyclic operation, the pump unit, the technological process.

1. Gubarev A.P., Kozinec D.A., Levchenko O.V. MAS-1.0–uprowennoe modelirovanie mnogoprivodnyh gidropnevmaticheskih sistem ciklicheskogo dejstvija (MAS-1.0 - simplified modeling multidrive hydropneumatic systems in cyclic operation). Vseukraїns'kij naukovo-tehnіchnij zhurnal “Promislova gіdravlіka і pnevmatika” NO 4(10), 2005, pp. 72-77.
2. Gubarev A.P., Kozinec D.A., Levchenko O.V. Proverka logiki funkcionirovanija ciklovyh sistem gidravlicheskih i pnevmaticheskih privodov (Checking the logic of the operation of cycle systems of hydraulic and pneumatic actuators). Vseukraїns'kij naukovo-tehnіchnij zhurnal “Promislova gіdravlіka і pnevmatika” NO 3, 2004, pp. 64-69.
3. Gubarev A.P. Diskretno-logicheskoe upravlenie v sistemah gidropnevmoavtomatiki: Uchebnoe posobie (Discrete-logic control in systems of hydropneumoautomation: Textbook). Kyiv: ISMO, 1997, 224p.
4. Gubarev A.P. Prichinno-sledstvennaja model' obektov gidropnevmoavtomatiki – osobennosti i svojstva (The cause-and-effect model of objects of hydropneumoautomation - characteristics and properties). Kyiv: NTUU «KPI», 1999, 107p.
5. Gubarev A.P., Uzunov A.V., Averina T.V. Object-controlled learning in machinery hydraulics, New Media and Telematic Technologies for Education in Eastern European Countries / Edited by P.Kommers, A.Dovgiallo, V.Petrushin and
P.Brusilovsky.- Twente University Press,Enschede, The Netherlands, 1997, pp. 341-355.
6. Allgemeine Betriebs- und Wartungsanleitung für hydraulische Anlagen, 1995, Bosch Rexroth AG, Am Eisengieser, D-97816 Lohr am Main (vorm. Robert Bosch GmbH, Geschäftsbereich Hydraulik und Pneumatik).



УДК 539.4

Kryshchuk M., Orynyak A.
The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it ) ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )



Abstract. We consider boundary conditions of through-wall cracked pipe of different crack sizes and ratios of mean radius to thickness of wall under the action of combined loading pressure force and the cross point, which corresponds to the practical needs of enterprises of the energy profile. The author reveals the evolution of methods for calculation of elastic-plastic fracture with a crack pipe before demolition. Classification of methods of determining the limit of pipes with cracks. Given a reasonable analysis of existing methods of determination of J-integral and reference stress highlighted some significant advantages over other methods. In numerical solutions of problems of fracture mechanics for the pipes with continuous circular crack in the limit load applied software package Abaqus v.6.10 license Freiburg’s University IWM. The data which calculated of J-integral for the two types of pipes with cross cracks in the 12 different methods used in leading countries. The data obtained for the limit of pipe with one the factor loading bending moment, as well as the simultaneous action of internal pressure and bending moment.

Keywords: through-wall cracked pipe, leak before break, limit load, reference stress, J-integral.


1. Zahoor A, Kanninen MF. A plastic fracture mechanics prediction of fracture instability in a circumferential cracked pipe in bending, Part I: J-integral analysis. J Press Vessel Technol 1981; 103:352-8
2. Rice JR, Paric PC, Merkel JG. Progress in flaw grown and fracture toughness testing. ASTM STP 1973;536:231-45.
3. Paris PC, Tada H. The application of fracture-proof design methods using tearing-instability theory to nuclear piping postulating circumferential through-wall cracks. NUREG/CR-3464; 1983.
4. Klecker R, Brust F, Wilkowski GM. NRC leak-before-break (LBB.NRC) analysis method for circumferentially through-wall cracked pipes under axial plus bending loads. NUREG/CR-4572;1986.
5. Brust FW. Approximate methods for fracture analysis of through-wall cracked pipes. NUREG/CR-4853; 1987
6. Kumar V, German MD, Wilkening WW, Andrews WR, deLorenzi HG, Mowbray DF. Advances in elastic-plastic fracture analysis. EPRI NP-3607; 1984.
7. Kumar V, German MD, Shih CF. An engineering approach for elastic–plastic fracture analysis. EPRI NP-1931; 1981.
8. Kumar V, German MD. Elastic–plastic fracture analysis of through-wall and surface flaws in cylinders. EPRI NP-5596; 1989
9. Zerbst U, Shödel M, Webster S, Ainsworth R. Fitness-for-Service Fracture Assessment of Structures Containing Cracks. 2007, 295 p.
10. Paris P.C. and H. Tada, The application of Fracture Proof Design Methods Using Tearing Instability Theory to Nuclear Piping Postulating Circumferential Through Wall Cracks, NUREG/CR-3464, September 1983
11. R. Klecker, F.W. Brust and G. Wilkowski, NRC Leak-Before-Break (LBB.NRC) Analysis Method for Circumferentially Through-Wall Cracked Pipes Under Axial Plus Bending Loads, NUREG/CR-4572, May 1986.
12. Takahahi Y. Evaluation of leak-before-break assessment methodology for pipes with a circumferential through-wall crack part I: stress intensity factor and limit load solution. Int J Press Vessel Piping 2002; 79(6):385–92.
13. Lacire MH, Chapuliot S, Marie S. Stress intensity factors of through wall cracks in plates and tubes with circumferential cracks. ASME PVP 1999;388:13-21.
14. Rahman S. Probabilistic fracture analysis of cracked pipes with circumferential flaws. Int J Pres Ves Pip 1997;70:223-36.
15. J. Foxen, S. Rahman. Elastic-plastic analysis of small cracks in tubes under internal pressure and bending. Nuclear Engineering and Design 1999; 75-87:197
16. Laham Al. Stress Intensity Factor and Limit Load Handbook. British Energy Generation Ltd. 1998
17. Takahashi Y. Evaluation of leak-before-break assessment methodology for pipes with a circumferential through-wall crack. Part II: Jintegral estimation. Int J Press Vessel Piping 2002;79(6):393-402.
18. American Petroleum Institute API 579, Recommended Practice for Fitness for Service.
19. ABAQUS version 6.10 User’s manual. RI: Hibbitt, Karlsson & Sorencen Inc.2010
20. W. Brocks and I. Scheider. Numerical Aspects of the Path-Dependence of the J-Integral in Incremental Plasticity . Technical Note GKSS/WMS/01/08
21. Ainsworth R.A. The assessment of defects in structures of strain hardening material. Engng Fract. Mech, 1984, V.19, P. 633- 642
22. Laham Al. Stress Intensity Factor and Limit Load Handbook. British Energy Generation Ltd. 1998
23. Lacire MH, Chapuliot S, Marie S/ Stress intensity factors of through wall cracks in plates and tubes with circumferential
cracks. ASME PVP 1999;388:13-21.
24. Kryshchuk M., Oorynyak A. Journal the National technical university of Ukraine “KPI”. Series of engineering, 2012, no.64, p.76-81



<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Page 10 of 18