We have 56 guests online
Ulti Clocks content




Strutinskiy S., Gyrgiy А.
The National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. The results of studies in the spatial system drive mechanism of the type hexapod. For the developed spherical joints are defined non-linear elastic-dissipative characteristics. For this purpose, was made a special experimental plant, which measured the hysteresis characteristics of the joints under cyclic loading. Characteristics of joints are described by analytical dependences of regression by using Fuzzy Sets. Determined by the characteristic functions of fuzzy sets that describes the response. They were obtained by the composition of mathematical models of the characteristics of individual cycles of loading of spherical joints. Membership functions were approximated by Gause curve.
Developed a method for analytical description of nonlinear hysteretic characteristics of the joints through the synthesis of the obtained values of the characteristics by obtained characteristics functions of fuzzy sets. The method uses a random number generator, which corresponds to the distribution law of membership functions. There was proposed a simplified description of the nonlinear characteristics of the joints which takes into account their hysteresis properties and the availability of uncertainty of values of characteristics. Given recommendations of using of the results for determine the precision parameters of the spatial drive system.

Keywords: spherical hinge, authentication, gap, nonlinear description, setting, experiment, hysteresis, dispersion, unclear plural, characteristic function, infinitely small process, infinitely rapid process, synthesis of description.

1. Bushuev V.V. Praktika konstruirovanija mashin(Practice of designing of machines). Moscow: Mashinostroenie, 2006. 448p.
2. Krajnev A.F. Ideologija konstruirovanija (Ideology of designing). Moscow: Mashinostroenie, 2003. 385p.
3. Krizhanіvs'kij V. A., Kuznecov Ju. M., Valjavs'kij І. A., Skljarov R. A. Tehnologіchne obladnannja z paralel'noju kіnematikoju (A technological equipment is with a parallel kinematics). Kіrovograd, 2004. 449 p.
4. Strutinsky S.V. Tehnologіja і tehnіka drukarstva. [Technology and technique of book-printing]. 2010. no 1 (27). pp.163-170.
5. Strutinsky S.V., Jahno O.M. Journal of Mechanical Engineering of the National Technical University of Ukraine  “Kyiv Polytechnic Institute”. No 59. 2010. pp.224-228.
6. Tjerano T., Asan K., Sugjeno M. Prikladnye nechetkie sistemy (Application unclear systems). Moscow: Mir, 1993. 368p.
7. Kruglov V.V., Dli M.I., Golunov R.Ju. Nechetkaja logika i iskusstvennye nejronnye seti (Fuzzy logic and artificial neuron networks). Moscow: Fizmatlit, 2001. 221 p.
8. Strutinsky S.V. Konstrujuvannja, virobnictvo ta ekspluatacіja sіl's'kogospodars'kih mashin. [Constructing,  production and exploitation of agricultural machines]. KNTU, 2005.no 35. pp.310-315.
9. Strutinskij S.V., Kropіvna A. Analіz procesіv tehnologіchnih system (Analysis of processes of the technological systems). Kіrovograd: «KOD», 2010. 428 p.



 УДК 621.941.01.002.3

Malafeev Y., Prihodko D.
The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. Soft magnetic materials are widely used in modern technologies, processing of which is difficult and requires further research. Analysis of the literature revealed that the factories in the finishing operations are rarely used parts of the subtle turning of permalloy alloys, as a more efficient process, replacing the grinding. The correct choice of tool marks, primarily related to its effect on performance and quality characteristics of these alloys. To the qualitative characteristics of permalloy 50N primarily include the microhardness of the surface layer, the degree of work hardening, surface roughness and magnetic properties. This task is greatly complicated by a large number of tool materials - high-speed steels, hard alloys, tungsten carbides, mineral ceramics, superhard materials. Studied the effect of tool material brand on the magnetic properties of permalloy 50H at the thin turning on the representatives of different tool material groups "P", "M" and "K" on the international system JSO. The tool materials diagram ranged by size drop of the permalloy 50H magnetic properties was constructed. The best alloy instrument brand is determined - tungsten carbide KNT16, which provides the minimum fall value of the maximum magnetic permeability permalloy 50H. Stability dependence, which allows to predict tool stability for a given cutting conditions while limiting it to a critical wear limit in the processing, was submitted. The sharp drop in the magnetic properties of permalloy 50H while processing by the wolfram containing tools is explained into the neutron scattering experiments, in which the introduction of wolfram atoms in a nickel matrix causes a decrease of the atomic momentum in the large volume of the metal matrix around the impurity atoms, since the lattice parameter of wolfram is twice bigger than the lattice parameter of nickel.

Keywords: advanced technology, magnetically soft materials, Permalloy 50H, tool materials, tungsten carbides, performance, quality characteristics, thin turning, ranking tool materials, diffusion wear, microhardness, work hardening, softening, maximum permeability, stability dependence, tool stability forecasting.

1. Kolesov I.M. Osnovy tehnologii mashinostroenija. Moscow: Mashinostroenie. V 2-h. t., 1977.
2. Tehnologija mashinostroenija. Pod red. A.M. Dal'skogo. V 2-h. t. Moscow: Izd, vo MGTU im. N.Je. Baumana, 1998.
3. Matalin A.A. Tehnologija mashinostroenija. Lviv: Mashinostroenie, 1985. 472 p.
4. Klepikov V.V., Bodrov A.N. Tehnologija mashinostroenija. Moscow: FORUM. 2008. 864 p.
5. Ryzhov Je.V., Suslov A.G., Fedorov V.P. Tehnologicheskoe obespechenie jekspluatacionnyh svojstv detalej mashin. Moscow:
Mashinostroenie, 1979. 176 p.
6. Demkin N.B., Ryzhov Je.V. Kachestvo poverhnosti i kontakt detalej mashin. Moscow: Mashinostroenie, 1981. 244 p.
7. Suslov A.G., Tehnologicheskoe obespechenie parametrov sostojanija poverhnostnogo sloja detail. Moscow: Mashinostroenie, 1987. 207 p.
8. Kolesov I.M. Osnovy tehnologii mashinostroenija. Moscow: Vysshaja shkola, 2001. 591p.
9. Bodrov B.M. Osnovy tehnologii mashinostroenija. Moscow: Mashinostroenie, 2005. 736p.
10. Suslov A.G. Tehnologija mashinostroenija. Moscow: Mashinostroenie, 2007. 430p.
11. Matalin A.A. Tehnologija mashinostroenija. Izdatelstvo: Lan, 2008, 512p.
12. Jawericyn P.I. Teorija rezanija. Minsk.: Novoe znanie, 2006.
13. Makarov A.D. Optimizacija processov rezanija. Moscow.: Mashinostroenie, 1976, 278p.
14. Makarov A.D., Muhin V.S., Shuster L.Sh. Iznos instrumenta, kachestvo i dolgovechnost detalej iz aviacionnyh materialov. Ufa, 1974. 371p.
15. Loladze T.N. Prochnost i iznosostojkost rezhuwego instrumenta. Moscow: Mashinostroenie, 1982. 320p.
16. Granovskij G.I., Granovskij V.G. Rezanie metallov. Moscow: Vysshaja shkola, 1985. 304p.
17. Jawericyn P.I., Eremenko M.L., Zhigalko N.I. Osnovy rezanija i rezhuwij instrument. Minsk: Vyshejshaja shkola, 1975. 527p.
18. Trent E.M. Rezanie metallov. Moscow: Mashinostroenie, 1980. 263p.
19. Armarego I. Dzh., Braun R.H. Obrabotka metallov rezaniem. Moscow: Mashinostroenie, 1977. 325p.
20. Hrul'kov V.A. Mehanicheskaja obrabotka izdelij iz magnitnyh materialov. Moscow: Mashinostroenie, 1966. 163p.
21. Loladze T.N. Iznos rezhuwego instrumenta. Moscow: Mashgiz, 1958. 354p.
22. Talantov N.V., Dudkin M.E. Issledovanie diffuzionnyh processov pri obrabotke stalej tverdosplavnym instrumentom. V sb.: Tehnologija
mashinostroenija i avtomatizacija proizvodstvennyh processov. Volgograd: VPI, 1978, p.79-91.
23. Talantov N.V., Dudkin M.E. O mehanizme iznosa tverdosplavnogo instrumenta. V sb.: Rezanie i instrument. Vyp.24, Harkov: Viwa shkola,
1980, pp.30-35.
24. Talantov N.V. Fizicheskie osnovy processa rezanija. V sb.: Fizicheskie processy pri rezanii metallov. Volgograd: VPI, 1984, pp.3-37.
25. Bobrov V.F. Osnovy teorii rezanija metallov. Moscow: Mashinostroenie, 1975. 344p.
26. Bekker M.S. Nekotorye osobennosti rezanija zheleza Armko. Voprosy obrabatyvaemosti metallov rezaniem. Ivanovo: 1973, p.87.
27. Tikadzumi S. Fizika ferromagnetizma. Moscow: Mashinostroenie, 1983. 304p.
28. Zaks L. Statisticheskoe ocenivanie. Moscow: Statistika, 1976. 598p.



УДК 539.3

 Rudakov K., Dobronravov A.
The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


The authors generalizes an idea of Lee's multiplicative decomposition for the case of simultaneous presence of four types of strains: thermal, elastic, plastic and creep. This decomposition uses group properties of operators of reflection from an abstract algebra.
Using multiplicative decomposition of matrix of Cauchy-Green strain gradient for three times, the matrix is found to be equal to the product of four matrices of gradients separately from each type of strain. This allowed writing Green's-Lagrange's tensors for the different types of strains, as well as exactly additive decomposition of the matrix of the spatial gradient of the strain rate for each type of strain. The matrix of the spatial gradient of strain rate is multiplied on the transpose matrix of the gradient of the elastic strain on the left side and on the normal matrix of the gradient of the elastic strain on the right side for use of the energetically integrated second stress tensor of Piola-Kirhgof. The resulting expressions will be used for an establishment of the equations of thermoelasto-plasticity and creep in the case of large strains by means of the second law of the thermodynamics that is written down in the form of Clausius-Duhem's inequality.

Keywords: large strains, multiplicate decomposition, thermoelastic, plastic, creep.

1. Green A.E., Naghdi P.M. A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Analysis, 1965. 18. pp. 251-281.
2. Vashizu K. Variacionnye metody v teorii uprugosti i plastichnosti [Variational methods in elasticity and plasticity] Moscow: Mir, 1987.
542 p.
3. Kojic M., Bathe K-J. Studies of finite element procedures-stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation. Comput. Struct., 1987. 26. pp. 175-179.
4. Eterović A.L., Bathe K-J. A hyperelastic-based large strain elasto–plastic constitutive formulation with combined isotropic-kinematic
hardening using the logarithmic stress and strain measures. Int. J. Num. Meth. Enging, 1990. 30. pp. 1099-1114.
5. Weber G., Anand L. Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids. Comput. Meth. App. Mech. Enging, 1990. 79. pp. 173–202.
6. Lee E.H. Elastic–plastic deformations at finite strains. J. Appl. Mech. (ASME), 1969. 36. pp. 1–6.
7. Bathe K-J. Finite Element Procedures. New-York: Prentice Hall, 1996. 1037 p.
8. Montáns F.J., Bathe K-J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. Int. J.
Num. Meth. Enging, 2005. 63. pp. 159-196.
9. Stojanović R., Djurić S., Vujošević L. On finite thermal Deformations. Arch. Mech. Mech., 1964. 16. pp. 103-108.
10. Vujošević L., Lubarda V.A. Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient. Theor. Appl. Mech. Enging, 2002. 28-29. pp. 379-399.
11. Lubarda V.A. Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev., 2004. 57. no 2. pp. 95-108.
12. Weber G.G., Boyce M.C. A framework for finite strain thermoelasto-plastic deformation of Solids. D. Hui, T.J. Kosik, eds., Symp. on
Viscoplastic Behavior of New Materials, ASME Winter Annual Meeting Proceedings, 1989. 1. pp. 17.
13. Cleja-Tigoiu S., Soo´s E. Elastoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev., 1990. 43. pp. 131-151.
14. Lion A., Höfer P. On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech., 2007. 59. pp. 59-89.


<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Page 8 of 18