Google Scholar

We have 98 guests online
Ulti Clocks content


УДК. 629.735.33

Zbrutsky A., Masko A., Suhov V.
The National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. The purpose of this paper is to review current and future tube launch UAV class "micro» (μ), and outline their applications and directions of scientific and technical search.
Methodology. The paper used available scientific and technical literature and data producers. An overview of common UAVs
different wind patterns and are their main characteristics.The main features of tube launch UAV: aerodynamic scheme "aircraft";
way transportation and launch - an airtight container with a catapult arranged; target load - digital or video camera; way of
landing - parachute mode control - automatic or semiautomatic.
Results of work. The main characteristics of tube launch UAV. The analysis of tactical and technical characteristics of existing
designs. The need for further research in this direction. Analyzed aerodynamic scheme "tandem" and justified its use. A brief
analysis of the characteristics of the prototype "Sokil-2" and outlines directions for further research. Formulated critical scientific
and technical issues potrubuyut solution: start, landing system, control system.
Field of application. Analytical review can be used in the formation requirements and the general outlines tube launch UAV
Keywords: unmanned aerial vehicle, tube launch, unmanned aircraft " Sokil - 2".

1. Bespilotnye letatel'nye apparaty: Metodiki priblizhennyh raschetov osnovnyh parametrov i harakteristik [Unmanned aerial vehicles: Methods of approximate calculation of basic parameters and characteristics] V.M. Iljushko, M.M. Mitrahovich, A.V. Samkov, V.I. Silkov, O.V.
Solovev, V.I. Strelnikov. Kyiv CNII VVT VS Ukrainy, 2009, 302 p.
2. Pavlushenko M. Bespilotnye letatel'nye apparaty: istorija, primenenie, ugroza rasprostranenija i perspektivy razvitija [Unmanned aerial
vehicles: history, application, the threat of the spread and development prospects]. M.Pavlushenko, G.Evstafev, I.Makarenko.Moscow.: Prava
cheloveka, 2005, 611 p.
3. Obwie vidy i harakteristiki bespilotnyh letatel'nyh apparatov: sprav. Posobie [Common types and characteristics of unmanned aerial vehicles:
on the right. Allowance]. A.G. Grebenikov, A.K. Mjalica, V.V. Parfenjuk i dr., Harkov: Nac. ajerokosm. un-t «Hark.aviac. in-t», 2008, 377 p.
4. Egorov K., Smirnov S. Bespilotnye aviacionnye kompleksy v vooruzhjonnyh konfliktah. [Unmanned aircraft systems in armed conflict]
Voennyj parad, ijul-avgust, 2005, pp. 34-35.
5. Unmanned vehicles. Handbook 2010. Shephard press. Burnham, 2010. 145 p.
6. Gary Mortimer Ukrainian State Company Unveils Tube-Launched Aerial Drone. Available at: (accessed 10 November 2011).



УДК 621.9.01:519.6

Kryvoruchko1 D, Storchak2 M.
1-Sumy State University, Sumy,Ukraine( This e-mail address is being protected from spambots. You need JavaScript enabled to view it );
2- Institute for Machine Tool of University Stuttgart, Germany( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


Abstract. In recent years, machining simulation techniques have received considerable development. To ensure the practical use of the numerical models, they have to be experimentally approved and "calibrated" on the various indicators. The article analyzed the possibility of a "calibration" on the temperature of a chip outer surface. By comparing the experimental data on the temperature of the chip outer surface with the results of analytical modeling it was shown that the temperature field of the chip outer surface formed mainly by the heat generated during plastic deformation in the zones of primary and secondary deformation. Experimental investigations carry out at the special test bed for the orthogonal cutting. The stand of the test bed is made from massive polymer concrete slabs und carries the tool holder, which is mounted in gantry design. The measuring of the chip outer surface temperature is obtained with a high-speed pyrometer. This pyrometer ensures the measurement of chip outer surface temperature by for this material determinate cutting speed range. The measurement of cutting forces and cutting temperature realize with the hardware of National Instruments company and software of LABVIEW. The recording and processing of the signals with hardware is based on a multi-functional measuring board, which is integrated in the measuring computer.

Keywords: temperature, heat, chips, model, pyrometer

1. Reznikov A. N., Reznikov L. A. Teplovye processy v tehnologicheskih sistemah. Moscow.: Mashinostroenie, 1990, 288 p.
2. Sutter G., Faure L., Molinari A. и др. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. Int. J. of Machine tools Manufacture. 2003. Vol. 43, p. 671 – 678
3. Krivoruchko D. V., Zaloga V. A., Mazur N. P. Analiz sovremennyh metodov chislennogo modelirovanija teplovyh javlenij pri rezanii
materialov//Suchasnі tehnologії u mashinobuduvannі: zbіrnik naukovih prac. H.: NTU «HPI», 2007, T.3, p.158 – 167 
4. Osnovi teorії rіzannja materіalіv: pіdruchnik, N.P. Mazur i dr. Lvіv: Novij svіt, 2010, 422 p.
5. Reznikov A. N. Teplofizika processov mehanicheskoj obrabotki, Moscow: Mashinostroenie, 1981, 279p.
6. Oxley P. L. Mechanics of machining: An analytical approach to assessing machinability.: Ellis Harwood Limited, 1989, 242 p.
7. Krivoruchko D. V. Naukovі osnovi modeljuvannja procesіv rіzannja z vikoristannjam chislovih metodіv: Avtoref. diss. dokt. tehn. nauk: 05.03.01/SumGU. Harkіv, 2010, 40 p.
8. Bobrov B. F. Osnovy teorii rezanija metallov. Moscow: Mashinostroenie, 1975, 344 p.
9. Heisel U., Storchak M. Simulation Tool for Modeling of Interaction Process by Orthogonal Cutting. Резание и инструмент, 2007, Т. 43, p. 335 – 341.
10. Storchak M. G. Kompleks programm dlja jeksperimental'nyh issledovanij processov obrabotki. Suchasnі procesi mehanіchnoї obrobki іnstrumentami z NTM ta jakіst poverhnі detalej mashin. Kyiv: ІNM іm. V. M. Bakulja NAN Ukraїni, 2006, p. 225 - 231.



УДК 532.517: 533.6.08

Turick1 V., Voskoboinick2 V., Voskoboinick2 A.
1-The National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it );
2-The National Academy of Sciences of Ukraine, Kyiv, Ukraine


Abstract. Process control of mass and heat transfer in liquid and gas flows by means of cavities at the streamlined surfaces is one of the most promising ways to save energy in industrial, transport and power units and machines. The cause of this experimental study setting was deficit of information about coherent vortex structures (CVS) formation and emission from the grooves in the wake flow.
To obtain this information in this work we investigate the profiles of the defects of the longitudinal velocity, displacement thickness, momentum thickness and shape factor in the boundary layer of air flow in front, above and behind the surface semi-cylindrical indentation on a flat plate. Analysis of these data shows that they reflect the influence of dissipative and inertial effects on the structure of the flow and allow us to determine the location of the CVS zones in the cavity of the groove and to better understand the conditions and nature of their beginning. Quantitative and qualitative changes of shape factor along the longitudinal coordinate as a function of flow velocity are significantly differ from traditional notions about weak dependence of this characteristic from Reynolds number, that is peculiar to flow over the plates and wing profiles without indentations. The proposed organization and implementation of experiments allow to receive sufficiently effective data by using per single hot-wire sensor of thermoanemometer. Pictures of the formation and evolution of the CVS expend complementary to the boundary conditions database for numerical calculations of heat transfer and aerodynamic drag in the flow with small Mach numbers over surface indentations. Results of investigation may be useful in designing of surfaces for aircrafts, ships and ground transports, as well as efficient compact heat exchangers
Keywords: boundary layer, boundary conditions, cavity, indentation, velocity defects, displacement thickness, momentum thickness, shape factor, coherent vortex structures

1. Khalatov A. A. Teploobmen i gidrodinamika okolo poverhnostnyh uglublenij (lunok) [Heat transfer and fluid mechanics over surface indentations (dimples)]. Kiev, ITTF NAN Ukrainy, 2005. 76 p.
2. Rowley C. W., Colonius T., Basu A. Journal of Fluid Mech., 2002, no. 455, pp. 315–346.
3. Babenko V. V., Musienko V.P., Turick V.N., Miljukov D.E. Prikladna gidromehanika, 2010, 12, no. 4, pp. 3–25.
4. Ermishin A. V. Upravlenie obtekaniem tel s vihrevymi jachejkami v prilozhenii k letatel'nym apparatam integral'noj komponovki. Pod red. A.V. Ermishina, S.A. Isaeva [Control of surface current with vortical cells applied to flying apparatuses of integral configuration]. Moscow, Saint Petersburg, 2001. 360 p.
5. Gortyshov Ju. F., Popov I.A., Olimpiev V.V., Shchelchkov A.V.,. Kas'kov S.I. Teplogidravlicheskaja jeffektivnost' perspektivnyh sposobov intensifikacii teplootdachi v kanalah teploobmennogo oborudovanija [Heat- and hydraulic efficiency of perspective methods of heat transfer intensity in channels of heat exchangers]. Kazan', Centr innovacionnyh tehnologij, 2009. 531 p.
6. Kiknadze G. I. Trudy XVI Shkoly- seminara molodyh uchenyh i specialistov pod rukov. akademika RAN A.I.Leont'eva, Sankt-Peterburg, т.2. [Proc. XVI School-seminar of young scientists and specialists under RAS academician leadership A.I. Leont’ev, Saint Petersburg, Vol. 2]. Moscow: Izd-skij dom MEI, 2007, pp.341–345.
7. Pereira J. C. F., Sousa J.M.M. Journal of Fluids Eng., 1995, no.117, pp. 68–74.
8. Savel'ev A. D. Izv. RAN. MZhG, 2001, no. 3, pp. 79–89.
9. Khalatov A. A. VI Minskij Mezhdunar. Forum po Teplomassoobmenu, MMF 2008 [Proc. VI Minsk International Heat and Mass Transfer Forum, MMF 2008]. Minsk, Belarus', 2008, pp. 1–20.
10. Rockwell D. Annu. Rew. Fluid Mech., 1998, no. 30, pp. 199–229.
11. Voskobіjnik V. A., Voskobіjnik A.V. Vіsnyk Donec'kogo Unіversitetu, Ser. A: Prirodnichі nauki, 2010, no. 2, pp. 64–70.
12. Rozumnjuk N. V. Prikladna gіdromehanіka, 2007, 9, no. 4, pp. 49–58.
13. Lin J.–C., Rockwell D. AIAA Journal, 2001, 39, no. 6, pp. 1139–1151.
14. Kovalenko G.V., Khalatov A.A. Prikladna gidromehanika, 2008, 10, no. 1, pp. 23–32.
15. Turick V. M., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Naukovі vіstі NTUU „KPІ”, 2008, no. 4, pp. 46–54.
16. Turick V. M., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Vіsnyk NTUU „KPІ”, Mashinobuduvannja, 2010, no. 59, pp. 110–117.
17. Turick V.N., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Promyslova gіdravlіka і pnevmatyka, 2011, no. 3 (33), pp. 23–27.
18. Shlihting G. Teorija pogranichnogo sloja [Theory of Boundary Layer]. Moscow, Nauka, 1974. 712 p.
19. Tarasov A. I., Titov V.B., Gurinov A.A. Vіsnyk Nacіonal'nogo tehnіchnogo unіversitetu «KhPІ», Energetychnі ta teplotehnіchnі procesy j ustatkuvannja, 2008, no. 6, pp. 88–92.
20. Lojcjanskij L.G. Mehanika zhidkosti i gaza [Mechanics of Fluid and Gas]. Moscow, Nauka, 1987. 840 p.


<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Page 7 of 18