We have 126 guests online
Ulti Clocks content


УДК 532.516

 

Veskov E.

«Yuzhnoye» state design office, Dnepropetrovsk, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )

 

METHODS OF MAINTENANCE OF STABILITY OF THE SOLUTION IN SMOOTHED PARTICLES HYDRODYNAMICS

 

Purpose. Study of the procedures for solution stability provision in SPH. Design/methodology/approach. The following procedures are discussed: application of repulsive forces affected the fluid particles; application of specific-type kernels; calculations with a variable smoothing length; refinement based on fission of particle; integration of motion equations using symplectic integrators. Findings. It is enough to apply the Gaussian kernel and Verlet symplectic integrator to solve problems with a simple geometry (dam failure) to ensure stability. To solve problems with a complex geometry and high-drag bodies, it is required to apply additionally the particles refinement and a variable smoothing length. Application of repulsive forces depending on selection of problem-depending parameters can result in instability for a small amount of particles (up to 15,000 particles). Originality/value. The study results can be used in hydrodynamic calculations for hydraulic architecture and in calculations of processes in aircraft fuel tanks.

Keywords: Smoothed Particles Hydrodynamics, tensile instability, particles refinement

 

References
1. Liu G.R., .Liu M.B. Smoothed particles hydrodynamics a meshfree particles method. Singapore: «World Scientific Publishing Co. Pte. Ltd.», 2003. 472 с. ISBN 981-238-4456-1.
2. Monaghan J. J. Smoothed particles hydrodynamics [Jelektronnyj resurs]. Reports on Progress in Physics, Vol.68 (2005), pp.1703-1759. Режим доступа: http://iopscience.iop.org/0034-4885/68/8/R01/
3. Crespo A.J. Application of the Smoothed Particle Hydrodynamics model SPHysics to free surface hydrodynamics: PhD Thesis 01.06.2008. Universidade de Vigo, 2008. http://cfd.mace.manchester.ac.uk/sph/SPH_PhDs/2008/crespo_thesis.pdf
4. Veskov E.V. Chislennoe modelirovanie sliva zhidkosti iz toplivnogo baka rakety-nositelja. Visnik Dnipropetrovs'kogo universitetu. Serija «Raketno-kosmichna tehnika», 2012, No.5. Vip. 16, T.2 316 p. ISSN 9125 912
5. Monaghan J.J. SPH without tensile instability. Journal of Computational Physics,2000 ,#159, pp.290-311.
6. Shadloo M., Zainali A., Sadek S., Yildiz M. Improved Incompressible Smoothed Particles Hydrodynamics method for simulating flow around bluff bodies. Comput. Methods Appl. Mech. Engrg., 2011, Vol. 200, Issues 9-12, pp. 1008-1020.
7. Valke S., Rijcke S., Rodiger E., Dejonghe H. Kelvin -Helmholtz instabilities in Smoothed Particle Hydrodynamics. Mon. Not. R. Astron. Soc., 2009, Vol. 000, pp. 1-16.
8. Sigalotti L., Daza J., Donoso A Modeling free surface flows with smoothed particle hydrodynamics, Condensed Matter Physics, 2006, Vol.9, No 2(46), pp. 359-366.
9. Feldman J., Bonet J., Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems, Int. J. Numer. Meth. Engng, 2000; 00:1-6.
10. Lastiwka M., .Quinlan N., .Basa M. Adaptive particle distribution for smoothed particles hydrodynamics, Int. J. Numer. Meth. Fluids 2005; 47:1403-1409.
11. Lopez Y.R., Roose D. Dynamic refinement for fluid flow simulation with SPH [Jelektronnyj resurs] / II International Conference on Particle-based Method - Fundamentals and applications particles, 2011. Rezhim dostupa: https://lirias.kuleuven.be/bitstream/123456789/337083/1/Rey2011PartDynRef.pdf
12. Lopez Y.R., Roose D. Particle refinement for fluid flow simulation with SPH [Jelektronnyj resurs]. 19th International Conference on Computer Methods in Mechanics, 9-12 May 2011, Warsaw, Poland. Rezhim dostupa: http://www.cmm.il.pw.edu.pl/cd/pdf/079_f.pdf
13. Shevchenko B.A. Raschetnyj i jeksperimental'nyj metod razrabotki sredstv zabora komponentov iz bakov letatel'nyh apparatov s zhidkostnym raketnym dvigatelem: dis. … kand. tehn. Nauk: 1990. Dnepropetrovsk, 1990. 209 c. Bibliogr. pp.189 – 209

 

 

pdf button.pdf