We have 48 guests online
Ulti Clocks content


УДК 616.71-001.5-089.84.:669.295



Laksha A.
Ukrainian Military Medical Academy, Kyiv, Ukraine ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it )


THE METHOD OF CREATING REALISTIC FINITE-ELEMENT MODELS OF LONG BONES

Abstract. The article describes in detail a method of finite elementary models of human long bones using a software package Mimics.
Algorithm for creating realistic models of elementary-course of long bones examined by the example of constructing a model of the tibia. A computer model was created based on the homographic study nine legs in 8 male patients aged 23 to 54 years with no signs of bone pathologic. Creating realistic models was to use computer tomography of limb segments and, based on the numbers of Hounsfield, a partition on the types of bone: compact , and the spongy medullar canal. The models assigned anisotropic properties. In the software environment of ANSYS models showed excellent performance. With the help of realistic finite-elementary models of human long bones can be carried out computer simulations to calculate the optimal system of fixation of bone fragments in fractures of bones based on the definition of critical displacements and strains in bone tissue, and in the metal structures of fixation devices.


Keywords: long bones, computers design.


1. Cornelissen P., Cornelissen M., Van der Perre G., Christensen A.B., Ammitzboll F., Dyrbye C. Assessment of tibial stiffness by vibration testing in situ - II. Influence of soft tissues, joints and fibula. J. Biomech. 1986;19(7):551-561.
2. Al-Sukhun J.; Lindqvist C.; Helendius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. II. Variables affecting the predictive behavior of a finite element model of a human mandible. 2007;80 (1):247-256.
3. Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Craniomaxillofac Surg. 2000;28(2):91-96.
4. Shahar R, Zaslansky P, Barak M, Friesem AA, Currey JD, Weiner S. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech. 2007;40(2):252-64.
5. Odgaard A, Linde F. The underestimation of Young's modulus in compressive testing of cancellous bone specimens. J Biomech. 1991;24(8):691-8.
6. P´erez M. A., Fornells P., Garc´ıa-Aznar J. M., Doblar´e M Validation of bone remodelling models applied to different bone types using mimics Available at:www.materialise.com/materialise/download/en/2610565/file
7. Крищук М.Г., Лакша А.М., Єщенко В.О. Оцінка адекватності імітаційної моделі напружено-деформованого стану сегмента кінцівки з фіксацією перелому стержневим апаратом зовнішньої фіксації / М.Г. Крищук, А.М.Лакша, В.О.
Єщенко // Вісник Національного технічного університету України «Київський політехнічний інститут», Серія Машинобудування, – К: 2011, – № 61, том 1. – С. 76.


.pdf